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Disclaimer:

- the subject of this talk is about more than just colliders. It is a capability that
HEP has and can be used elsewhere. However, we will use collider examples
to illustrate various points.

- This is a rapidly growing effort with many contributors:
www.fastmachinelearning.org



http://www.fastmachinelearning.org/

Challenge: Rates and Complexity
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coming every 25 ns
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Total latency budget ~ 10us

Future proton colliders

will significantly exceed
these requirements




Solution?

Option 1: Send more data out

- requires very high bandwidth, low
power, rad hard links

- requires ultra fast data
reconstruction

Front-end Back-end

Front-end Option 2: put more logic to frontend

Back-end - Local tracking/clustering, efficient
data encoding

- More logic = more power. Again, has
to be rad hard or cold (e.g. LAr)

- No FPGA => ASIC

Can machine learning help with one or both options?
(in principle ML algorithms are naturally suited for this job)




Data Processing

Back-end

J \ Rewrite CPU-intensive
Employ ML algorithms

HLT/Offline tasks using ML
in Level-1 hardware

| will mostly focus on this Accelerate using co-

processors (e.g. FPGAs)

LHC Physicists Other Physicists Industry




What is his4dml|

User-friendly tool to build and optimize ML models for FPGAs:
- Reads as input models trained with standard ML libraries

- Uses Xilinx HLS software
- Comes with implementation of common ingredients (layers, activation functions, binary

NN ...)
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Quickly Growing Community

Al circuit for ultrafast inference on FPGA
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hisdml in ASIC

Future: Can we implement more sophisticated ML algorithms in the on-detector
ASICS?

- smarter data compression

- local tracking/clustering

- anomaly detection (channel sync, time drift, other issues? )

There must be other applications...
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System Controls

Can we have ML based accelerator

and detector controls?

- Example use case pursued for the
Fermilab accelerator complex

Take it further: the idea of future

intelligent systems

- Detect an anomaly using online data and
re-calibrate the response

- Requires online training

- many challenges on both algorithm and
HW side

Goes beyond HEP!
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Summary

+ The size, rate and complexity of future detectors presents a
significant challenge for online and offline data
reconstruction

+ Machine Learning has a potential to help solve some of

these problems

= Note that | focused almost entirely on inference, fast learning is a
whole different topic, but ties to autonomous systems

+ Foundation for this effort has been built and we are looking
to extend it in many directions across HEP and beyond it
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A quick how-to

+ Easy to inS'I'a" via plp git clone .. && cd hls4ml && pip install

+ Easy to configure through yaml config file

Inputs: your trained model
Precision: inputs, weights, biases, ...
ReuseFactor: how much to parallelize
Strateqgy:

Resource for large NN

Latency for pipelined-based code

for small NN

+ Easy to run:

Conversion: hls4ml convert -c keras-config.yml

Build: hls4ml build -p my-hls-test -c -s -r
Help: h1s4ml -h / hls4ml command -h

KerasJson: keras/KERAS_3layer.json
KerasH5: keras/KERAS_3layer_weights.h5
QutputDir: my-hls-test

ProjectName: myproject

XilinxPart: xckull5-flvb2104-2-1i
ClockPeriod: 5

HLSConfig:
Model:
Precision: ap_fixed<16,6>
ReuseFactor: 1
Strategy: Latency #Resource
LayerName:
densel:
ReuseFactor: 2
Strategy: Latency #Resource
Compression: True

keras-config.yml




Data Processing

Optical to electrical to fpga pins ~ Stream through PClexpress
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The Team

MEET THE COLLABORATORS

(click on name for more info)

CERN

Vladimir Loncar (PhD, Computer Science); Jennifer Ngadiuba (PhD, Physics); Maurizio Pierini (PhD, Physics); Sioni Summers (PhD,
Physics);

Columbia University
Giuseppe Di Guglielmo (PhD, Computer Science)

Fermilab
Christian Herwig (PhD,Physics); Burt Holzman (PhD,Physics); Sergo Jindariani (PhD,Physics); Thomas Klijnsma (PhD,Physics); Ben
Kreis (PhD,Physics); Mia Liu (PhD,Physics); Kevin Pedro (PhD,Physics); Ryan Rivera (PhD,EE); Nhan Tran (PhD,Physics)

Hawkeye 360

EJ Kreinar (Computer Science)

MIT
Jack Dinsmore (Undergraduate, Physics); Song Han (PhD, EECS); Phil Harris (PhD, Physics); Sang Eon Park (Graduate, Physics); Dylan
Rankin (PhD, Physics);

UC San Diego
Javier Duarte: PhD, Physics, Caltech

University of lllinois Chicago
Zhenbin Wu (PhD, Physics);

University of lllinois Urbana-Champaign
Markus Atkinson (PhD, Physics); Mark Neubauer (PhD, Physics);

University of Washington
Scott Hauck (PhD, EECS); Shih-Chieh Hsu (PhD, Physics);




Challenges for HLT/Offline

|0x larger events * 5x the rate * |0 years of data-taking
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And what if we need to expand the physics program?




Deep Learning in Level-1

CMS Muon Reconstruction Steps

Al circuit for ultrafast inference on FPGA
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The Challenge

This is an event collected in 201 6. Interaction region is ~10 cm in Z
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More data => more physics, but also more PileUp.
Currently up to 70 collisions per event.

In HL-LHC the average number will go up to <PU>=200
FCC-hh <PU> = 800-1000

+ 4+ + 4+




